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Abstract

The Hertz type contact problems and the analytical treatment of depth-sensing nanoindentation are under con-

sideration. Fundamental relations of nanoindentation tests are derived for various boundary conditions within the

contact region. First, a frictionless contact problem for a convex punch of revolution is studied and the connection

between Galin and Sneddon solutions is shown. The Bulychev–Alekhin–Shorshorov (BASh) relation that is commonly

used for evaluation of elastic modulus of materials by nanoindentation, is discussed. An analogous relation is derived

that is valid for adhesive (no-slip) contact. Similarly to the Pharr–Oliver–Brotzen frictionless analysis, the obtained

relation is independent of the geometry of the punch. Further, we study solutions to adhesive contact for punches whose

shapes are described by monomial functions and obtain exact solutions for punches of arbitrary degrees of the monoms.

These formulae are similar to the formulae of the frictionless Galin solutions and coincide with them when the material

is incompressible. Finally, indenters having some deviation from their nominal shapes are considered. It is argued that

for shallow indentation where the tip bluntness is on the same order as the indentation depth, the indenter shapes can be

well approximated by non-axisymmetric monomial functions of radius. In this case problems obey the self-similar laws.

Using one of the authors� similarity approach to three-dimensional contact problems and the corresponding formulae,

other fundamental relations are derived for depth of indentation, size of the contact region, load, hardness, and contact

area, which are valid for both elastic and non-elastic, isotropic and anisotropic materials for various boundary con-

ditions. In particular, it is shown that independently of the boundary conditions, the current area of the contact region

is a power-law function of the current depth of indentation whose exponent is equal to a half of the degree of the

monomial function of the shape.
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1. Introduction

Indentation testing is widely used for analysis and estimations of mechanical properties of materials.

Historically, first indentation tests were developed for hardness measurements. Then they were used for
extracting the mechanical properties of materials. The estimations of the thin film mechanical properties

can be affected by various factors (see, e.g. a discussion by Borodich et al., 2003). In this paper we study

connections between Hertz type contact problems and nanoindentation tests and in particular, the influence

of boundary conditions on analytical treatment of nanoindentation tests.

1.1. Hardness measurements

The idea of the hardness measurement traces back to R�eaumur (1722) (see, e.g. review of Williams
(1942)), who suggested to compare relative hardness of two contacting materials. However, the analytical

approach to the problem goes back to Hertz. In January 1881 Hertz submitted his famous paper on

contact theory to the Journal reine und angewandte Mathematik. The paper was published in 1882 (Hertz,

1882a). The same year he published another paper on contact problems where he suggested a way to

evaluate hardness of materials. To be more specific we will cite him. He wrote: ‘‘The hardness of a body is to

be measured by the normal pressure per unit area which must act at the centre of a circular surface of pressure in

order that in some point of the body the stress may just reach the limit consistent with perfect elasticity’’ (Hertz,

1882b). His contact theory (Hertz, 1882a) is of a great practical importance and is used in a number models
of contact (see, e.g. a discussion by Johnson (1982)). However, his above suggestion to measure the hardness

of a material by the initiation of plastic yield under an impressed hard ball (Hertz, 1882b), was found to be

impracticable Johnson (1985). Indeed, as early as in 1909 it was showed by Dinnik (1952) for a circular

contact region and later by Belyaev (see §28 by Belyaev (1924)) for an elliptic contact region that according to

Hertz contact theory, the point of maximum shearing stresses and consequently the point of first yield is

beneath the contact surface and it is normally hidden from view (Fischer-Cripps, 1997). Hence, in spite of

existence of some experimental techniques which give possibilities to detect plastic region below the surface

(see e.g., Fischer-Cripps, 1997), it is rather difficult to detect the first yield point experimentally.
Since that time, various experimental techniques were developed for hardness measurements by

indentation and various definitions of hardness were also introduced. Brinell (1900) delivered a lecture

where he described existing experimental means for hardness measurements and presented another simple

test (Brinell test) based on indentation of hard balls. Brinell assumed the test could give a single numerical

expression that may be used as a hardness number. However, soon after this Meyer (1908) showed that the

hardness of a metal cannot truly be represented by a single number and P ¼ kan where P is the load, k is an

empirical coefficient, n is an exponent, and a is the radius of the impression after unloading.

The hardness H was defined originally as the ratio of the maximum indentation force to the area of the
imprint after unloading
Hardness ¼ Load

Area of imprint
:

Brinell considered the area of curved surface, and the Brinnell hardness is usually defined as
HB ¼ P
A
; A ¼ pD

2
ðD�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 4a2

p
Þ;
where D is the diameter of the ball, while Meyer suggested using the area of the impression projected on the

initial contact plane. Hence, the Meyer hardness is defined as (see, e.g. Tabor, 1951)
HM ¼ P
A
; A ¼ pa2:
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Thus, the Hertz linearized formulation of a boundary value problem may be applied to the Mayer

approach, while it is not applicable to the Brinell test. A semi-analytical treatment of the Meyer test was

given by Tabor (1951). Another treatment of the Meyer test based on the similarity approach, was given by

Borodich (1989, 1993).
However, hardness is now often defined as the ratio of the maximum indentation force to the contact

area or as the ratio of current contact force to the current contact area
Hardness ¼ Load

Area of contact
:

For example, Bhattacharya and Nix (1988) defined the hardness as the load divided by projected area

under the indenter at various points on the loading curve. In this paper, we will adopt this definition.
Compared with spherical indenters, conical and pyramidal indenters have the advantage that geomet-

rically similar impressions are obtained at different loads even in the non-linearized formulation (Smith and

Sandland, 1925; Mott, 1956). Apparently, Ludwik (1908) was the first to use a diamond cone in a hardness

test. In 1922 two other very popular indenters were introduced. Rockwell (1922) introduced a sphero-

conical indenter (the Rockwell indenter), while Smith and Sandland (1922, 1925) suggested using a square-

base diamond pyramid (the Vickers indenter). These and other classic methods of measuring hardness are

described in details by Williams (1942), Mott (1956), and also in various standard textbooks. However,

there is a difficulty in machining a four-sided indenter in such a way that the sides meet in a point and not as
a chisel edge. This is why Berkovich and his research colleagues suggested the three-sided indenters for

micro-hardness tests (Khrushchov and Berkovich, 1950; Mott, 1956).

1.2. Depth-sensing techniques

The further progress in micro- and nano-hardness tests is mainly due to introduction of depth-sensing

indentation, i.e. the continuously monitoring the displacement of the indenter into the sample surface for

both loading and unloading branches. According to Bulychev and Alekhin (1990), the idea of the con-

tinuous monitoring the displacement of the indenter was first introduced by Grodzinski (1953). However,

the modern depth-sensing indentation technique, based on the use of electronics, was first introduced by

Kalei (1968), who recorded load–depth diagrams for various metals and minerals. For example, the dia-

gram was recorded for a chromium film of 1 lm thickness when the maximum depth of indentation was 150

nm. This revolutionary technique was developed very rapidly, first in the former Soviet Union (see, e.g.,
Alekhin et al., 1972; Ternovskii et al., 1973; Grigor�ev et al., 1977) and then world-wide. Pethica et al.

(1983) reported that they monitored indentations to depths as low as 20 nm. Modern sensors can accurately

monitor the load and the depth of indentation in the micro-Newton and few nanometer scale, respectively.

Introduction of a method of determination of Young�s modulus according to the indentation diagram

(Fig. 1) was a very important step in interpretation of indentation tests. The method was introduced by

Bulychev and co-workers (Bulychev et al., 1975, 1976; Shorshorov et al., 1981) in 1975. Evidently, the load–

displacement diagram at loading reflects both elastic and plastic deformations of the material, while the

unloading is taking place elastically. The boundary demarcating the elastic and plastic regions may only be
estimated by numerical techniques, for example by the finite element method. Therefore, Bulychev et al.

(1975) applied the elastic contact solution to unloading path of the load–displacement diagram assuming

the non-homogeneity of the residual stress field in a sample after plastic deformation may be neglected. The

Bulychev–Alekhin–Shorshorov (BASh) equation for the stiffness S of the upper portion of the load–dis-

placement curve at unloading is the following:ffiffiffip

S ¼ dP

dh
¼ 2 Affiffiffi

p
p E�; ð1Þ
where A ¼ pa2.
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Fig. 1. A sketch of the load–indentation depth curve.
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Here P is the external load, h is the indentation depth of the indenter tip, A is the contact area, a is the

radius of the contact region, and E� is the reduced Young�s modulus. This modulus can be obtained from

the following formula
1

E� ¼
1� m21
E1

þ 1� m22
E2

:

Here Ei and mi (i ¼ 1; 2) are the Young�s modulus and the Poisson ratio of the first and the second solid

respectively. If the indenter is rigid, i.e. E2 ¼ 1 then E� ¼ E=ð1� m2Þ where E ¼ E1 and m ¼ m1 are the

Young�s modulus and the Poisson ratio of the half-space, respectively.

The BASh relation is an example of fundamental relations which can be obtained from the analysis of

frictionless contact problems (see, e.g. Hay et al., 1999). Note that the BASh relation is valid only for
frictionless elastic contact, while the problems of adhesive contact, i.e. when there is no relative slip between

the surfaces of contacting solids, are more complicated. The latter problems were considered by various

authors (see, e.g. Mossakovskii, 1954, 1963; Goodman, 1962; Keer, 1967; Spence, 1968; Khadem and Keer,

1974 and the literature therein). However, the main results were obtained by Mossakovskii (1954, 1963) and

Spence (1968). A detailed discussion of various methods of solving adhesive contact problems was per-

formed by Gladwell (1980). Recently, the authors developed the Mossakovskii approach to the adhesive

problem and derived a relation that is analogous to the BASh relation (Borodich and Keer, 2004).

It is well known (Borodich and Galanov, 2002) that the main feature of the Hertz type contact problems
and the main difficulty of solving these problems is that the contact region is not known a priori. Hence,

even if the contact problem for linear elastic solids is considered, the problem is non-linear. However, the

classical non-linear Hertzian contact problem is self-similar. Hence, the non-linear 3D Hertz type contact

problem for linear elastic materials can be considered as steady-state. The self-similarity of the 3D problems

for isotropic elastic solids was discovered independently by Galanov (1981a) and Borodich (1983). Starting

with the pioneering work by Galanov (1981b), the similarity approach has been applied for numerical

simulations of the hardness probe by sharp indentors (Galanov, 1982; Galanov and Grigor�ev, 1986, see
also recent papers by Larsson, 2001 and Mata et al., 2002). It was shown by Borodich (1988, 1989, 1993)
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that the self-similarity approach is valid for non-linear anisotropic materials in both frictionless and fric-

tional cases. See also a recent discussion by Borodich and Galanov (2002). Roughly speaking, if the stress–

strain relation of the coating is r � �j where j is the work-hardening exponent of the constitutive

relationship and the indenter shape is described by f � Hd then the problem is self-similar, where Hd is a
homogeneous function. Following the recent approach by Borodich et al. (2003), we will apply the simi-

larity approach to blunted indenters having some deviation from their nominal shapes.

The paper is organized as follows: in Section 2 we consider frictionless Hertz type contact problems and

their applications for interpretation of micro- and nano-indentation tests. Although the formulation of the

Hertz type problem is given for both linear and non-linear materials, further in this paragraph we discuss

only contact for linear elastic materials and show that the BASh relation can be derived from the Galin

solution for frictionless axi-symmetric contact. In Section 3 we consider adhesive (no-slip) axi-symmetric

contact problems for linear elastic materials and derive a relation for the slope of the load–displacement
curve that is similar to the BASh relation. However, the final formula differs by a factor that depends on the

Poisson ratio of the material. We obtain also exact solutions for monomial punches of revolution and show

that in the case of incompressible materials the derived solutions are identical with the Galin solutions

obtained for frictionless contact. In Section 4 we consider indenters having some deviation from their

nominal shapes. We argue that for both axi-symmetric and three-dimensional cases (3D), the indenter

shape near the tip may be well approximated by monomial functions of radius. Since Hertz type contact

problems for such indenters are self-similar (Borodich, 1989, 1993), other fundamental relations are derived

for depth of indentation, size of the contact region, load, hardness, and contact area. Contrary to the
relations obtained in previous paragraphs, these relations are valid for both elastic and non-elastic (under

progressive loading), isotropic and anisotropic materials provided that the stress–strain curves are of power

law type. These relations are especially important for shallow indentation, where the tip bluntness is on the

same order as the indentation depth. The relations depend on the material hardening exponent and the

degree of the monomial function of the shape. Finally, we discuss uncertainties in nanoindentation mea-

surements that arise from geometric deviation of the indenter tip from its nominal geometry. We argue that

some of the uncertainties can be explained and quantitatively described using our new relations. In

Appendix A we show the equivalence of the Galin (1946) and the Sneddon (1965) solutions. In Appendix B
we derive the BASh relation using the Sneddon (1965) solution. In Appendix C we discuss the two-

dimensional (2D) Abramov–Muskhelishvili problem of adhesive contact for a flat punch.
2. Frictionless indentation

2.1. Hertz type contact problems for rigid indenters

Hertz (1882a,b) considered three-dimensional (3D) frictionless contact of two isotropic, linear elastic

solids. It is possible to show that the problem is mathematically equivalent to the problem of contact

between an indenter whose shape function f is equal to the initial distance between the surfaces, i.e.
f ¼ f1 þ f2 where f1 and f2 are the shape functions of the solids, and a half-space. In turn, this problem can

be reduced to the problem of contact between a rigid indenter (a punch) and an elastic half-space. Let us

consider the Hertz type contact problems for rigid indenters. It is assumed that a rigid indenter (a punch) is

pressed by the force P to a boundary of the contacting solid. In a geometrically linear formulation of the

contact problem, this solid can be considered as a positive half-space x3 P 0. Initially, there is only one

point of contact between the punch and the half-space. Let us put the origin (O) of Cartesian x1, x2, x3
coordinates at the point of initial contact between the punch and the half-space x3 P 0. We denote the

boundary plane x3 ¼ 0 by R2. Hence, the equation of the surface given by a function f , can be written as
x3 ¼ �f ðx1; x2Þ, f P 0.
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After the punch contacts with the half-space, displacements ui and stresses rij are generated. If material

properties are time independent then the current state of the contact process can be completely charac-

terized by an external parameter (P), e.g., the compressing force (P ), the relative approach of the bodies (h)
(for a rigid indenter, h is the depth of indentation) and the size of the contact region (l). For axi-symmetric
problems l is equal to the contact radius a. It should be noted that (l) can be used as the external parameter

of the problem only for convex punches (Borodich and Galanov, 2002).

Thus, it is supposed that the shape of the punch and the external parameter of the problem P are given

and one has to find the bounded region G on the boundary plane x3 ¼ 0 of the half-space at the points

where the punch and the medium are in mutual contact, displacements ui, and stresses rij. If the pressing

force P is taken as the external parameter P then one has to find the depth of indentation h and the size of

the contact region l. If h is taken as P then one has to find P and l.
2.2. Formulation of a Hertz type contact problem

In the general case of a 3D Hertz type contact problem, it is not assumed that the punch shape is de-

scribed by an elliptic paraboloid and the contact region is an ellipse as Hertz did, but the problem for-

mulation has the same main features as the original Hertz problem (Hertz, 1882a). Hence, the formulation

of the problem is geometrically linear, the contact region is unknown and should be found, only vertical

displacements of the boundary are taken into account, and the problem has the same boundary conditions

within and outside the contact region as in the original Hertz problem.

In the problem the quantities sought satisfy the following equations
rji;j ¼ 0; i; j ¼ 1; 2; 3;

rij ¼ Fð�ijÞ; �ij ¼ ðui;j þ uj;iÞ=2;Z Z
R2

r33ðx;PÞdx ¼ �P ;

ð2Þ
in which �ij are the components of the strain tensor and F is the operator of constitutive relations for the

material. The material behavior of the medium may be linear and non-linear, anisotropic or isotropic,
depending on the form of the operator F. For anisotropic, linear elastic media, the constitutive relations

have the form of Hooke�s law
rij ¼ cijkl�kl or rij ¼ cijkluk;l; cijkl ¼ cjikl ¼ cklij;
where cijkl are components of the tensor of elastic constants. In particular, in the case of an isotropic elastic

medium, Hooke�s law becomes
rij ¼ kdijuk;k þ lðui;j þ uj;iÞ;
where k and l are the Lam�e coefficients, and dij is the Kronecker delta. Here and henceforth, a comma

before the subscript denotes the derivative with respect to the corresponding coordinate; and summation
from 1 to 3 is assumed over repeated Latin subscripts.

The displacement vector u should satisfy the conditions at infinity
uðxÞ ! 0 when jxj ! 1: ð3Þ
Let us define the contact region G as an open region such that if x 2 G then the gap (u3 � g) between the

punch and the half-space is equal to zero and surface stresses are non-positive, while for x 2 R2 n G the gap

is positive and the stresses are equal to zero. Thus, u and rij should satisfy the following boundary con-
ditions within and outside the contact region
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u3ðx;PÞ ¼ gðx;PÞ; r33ðx;PÞ6 0; x 2 GðPÞ;
u3ðx;PÞ > gðx;PÞ; r3iðx;PÞ ¼ 0; x 2 R2 n GðPÞ:

ð4Þ
In the problem of vertical indentation an isotropic or transversally isotropic media by an axi-symmetric

punch, the contact region is always a circle. This fact simplifies analysis of the problem. The analysis of

three-dimensional contact is usually more complicated.

For the general case of the problem of vertical pressing, we have
gðx;PÞ ¼ h� f ðx1; x2Þ: ð5Þ

If one considers the frictionless problem, then the following two conditions hold within the contact

region
r31ðx;PÞ ¼ r32ðx;PÞ ¼ 0; x 2 GðPÞ � R2: ð6Þ

The conditions within the contact region for adhesive contact will be considered later.

2.3. The Galin solution and the BASh relation

The BASh relation was originally derived for spherical and conical indenters using exact solutions for

these indenters collected in Lur�e�s book (Lur�e, 1955). However, the relation could be easily obtained from

the Galin solution for arbitrary indenter of a monomial shape that he obtained in 1946 (Galin, 1946) (see

also Galin, 1953). Indeed, applying his general solution to the case of axi-symmetric punches whose shape is

described by monomial functions
f ðqÞ ¼ Bdq
d ; ð7Þ
Galin (1946) derived the following formulae (see, also Galin, 1953, p. 162, Eqs. (5.34) and (5.35))
P ¼ E
1� m2

Bd
d2

d þ 1
2d�1 ½Cðd=2Þ�

2

CðdÞ adþ1; h ¼ Bdd2d�2 ½Cðd=2Þ�
2

CðdÞ ad : ð8Þ
Using (8), he established the following relation between the force P and the displacement h
P ¼ E
1� m2

B�1=d
d 22=ddðd�1Þ=d 1

d þ 1
½Cðd=2Þ��2=d ½CðdÞ�1=d

� �
hðdþ1Þ=d : ð9Þ
Here d is the degree of the monomial function, and CðdÞ is the Euler gamma function. Note (9) was

presented by Galin (1946, 1953) (his Eqs. (4.35) and (5.36) respectively) with an omitted sign minus at the

exponent of Bd .

Differentiating (9) and using the second part of equations (8), one can see that
dP
dh

¼ E� 4

Bdd
CðdÞ

½Cðd=2Þ�2

" #1=d

h1=d ¼ 2E�a: ð10Þ
This is in accordance with the BASh relation (1) because a ¼
ffiffiffiffiffiffiffiffiffi
A=p

p
.

Further, taking into account that the shape function for bodies of revolution may be presented in the

form of the power series with fractional exponents
f ðqÞ ¼
X1
k¼1

Bkq
dk ; dk > 0 ð11Þ
and that Hertz type contact problems with identical contact regions can be superimposed on each other

(see, e.g. Mossakovskii, 1963; Borodich, 1990), one could prove the validity of the BASh relation (1) for any
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blunt axi-symmetric indenter. However, this result was obtained by Pharr et al. (1992) using another

approach.
2.4. The Galin solution for frictionless axi-symmetric contact

Various analytical approaches were developed to extract mechanical properties of materials from

indentation load–displacement data. The approaches are mainly based on either Galin�s or Sneddon�s
formulae. As we noted, both of these formulae are valid only for axi-symmetric frictionless Hertz-type

contact problems.

Let us use Cartesian and cylindrical coordinate frames, namely x1 ¼ x, x2 ¼ y, x3 ¼ z and q, /, z, where
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and x ¼ q cos/, y ¼ q sin/.

In 1946 considering axi-symmetric frictionless contact problems for an elastic isotropic half-space, Galin
obtained expressions for the contacting force P , the depth of penetration h and the pressure distribution

under a convex, smooth in R2 n f0g punch of the arbitrary shape x3 ¼ �f ðqÞ, f ð0Þ ¼ 0. In particular, he

wrote (see Eqs. (5.29) and (5.30) by Galin, 1946) or Eqs. (5.29) and (5.30) by Galin (1953)
P ¼ 2E
1� m2

Z a

0

q1Df ðq1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

1

q
dq1; ð12Þ

h ¼
Z a

0

q1Df ðq1Þarctanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1=a2
q� �

dq1: ð13Þ
Here a is the radius of contact and D denotes the two-dimensional Laplace operator
D ¼ o2

ox21
þ o2

ox22
¼ o2

oq2
þ 1

q
o

oq
: ð14Þ
If the shape function is described by (7) then Df ðqÞ ¼ Bd2qd�2, and (12) and (13) lead to (8). The solution

for an indenter described by (11) can be obtained as a superposition of solutions to the Hertz type contact

problems having the same fixed contact radius a. Hence, the contact load P and the depth of indentation h
satisfy the following equations (Borodich, 1990)
P ¼ E�
X1
k¼1

AðBk; dkÞadkþ1; AðBk; dkÞ ¼ Bk2
dk�1 d2

k

dk þ 1

½Cðdk=2Þ�2

CðdkÞ
;

h ¼
X1
k¼1

Bkdk2dk�2 ½Cðdk=2Þ�
2

CðdkÞ
adk : ð15Þ
(Note Borodich (1990) omitted the coefficient 1/2 in (15)) Differentiating P and h in with respect to a, one
obtains the BASh relation (1).

Let us show that the BASh relation (1) can be derived directly from the Galin solution, namely (12)–(14).

To do this we employ the Leibnitz rule of differentiation of an integral by a parameter a
d

da

Z L2ðaÞ

L1ðaÞ
F ðx; aÞdx ¼

Z L2ðaÞ

L1ðaÞ

dF ðx; aÞ
da

dxþ F ðL2; aÞ
dL2

da
� F ðL1; aÞ

dL1

da
:

For both Eqs. (12) and (13), the parameter a ¼ a, the limits of integrations L1 ¼ 0 and L2 ¼ a, while
F ðL2; aÞ ¼ 0. Hence, we have
dP
da

¼ 2E�
Z a

0

q1Df ðq1Þ
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

1

p
da

dq1 ¼ 2E�a
Z a

0

q1Df ðq1Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � q2
1

p dq1; ð16Þ
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dh
da

¼
Z a

0

q1Df ðq1Þ
d arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1=a2
p� �h i
da

dq1: ð17Þ
Taking into account the definition (see, e.g., (4.6.3) and (4.6.22) in Abramovitz and Stegun (1964))
arctanhv ¼
Z v

0

dt
1� t2

¼ 1

2
ln
1þ v
1� v

ð18Þ
and substituting v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1=a2
p

into this formula, one obtains
d½arctanhv�
da

¼ 1

1� v2
q2
1a

�3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1=a2
p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � q2
1

p : ð19Þ
By substituting this formula into (17) and comparing the result with (16), we obtain the BASh relation

for frictionless contact
dP
dh

¼ dP=da
dh=da

¼ 2aE� ¼ 2
ffiffiffi
A

pffiffiffi
p

p E�:
Remark 1. Sometimes the derivation of the BASh relation is wrongly attributed to Sneddon (1965). In fact,

Sneddon (1965) presented the formulae for the force and the indentation depth of a punch having contact

radius q ¼ a, namely
P ¼ 4la
1� m

Z 1

0

n2w0ðnÞdnffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p ; ð20Þ

h ¼
Z 1

0

w0ðnÞdnffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p ; ð21Þ
where f ðqÞ ¼ wðq=aÞ and l ¼ E=ð2ð1þ mÞÞ. Although Sneddon derived independently the formulae (20)

and (21), he could have obtained them from the Galin (1946) solution (see Appendix A). Similarly to the

above derivation, the BASh relation can be also derived the Sneddon formulae (see Appendix B). However,

neither Galin nor Sneddon calculated the slope dP=dh. The BASh relation was presented only in 1975

(Bulychev et al., 1975).

Remark 2. Using the property of the Euler gamma functions Cðnþ 1Þ ¼ n!, it is possible to show that the

Shtaerman (1939) solution is a particular case d ¼ 2n of the Galin solution (9). Here n is a natural number.

In particular, one can obtain the Shtaerman (1939) formula (see also Eq (5.20) in Johnson�s (1985) book)
P ¼ 4nB
E

1� m2
a2nþ1 2 � 4 � � � 2n

1 � 3 � � � 2nþ 1
¼ 4nB

E
1� m2

a2nþ1 ð2nÞ!!
ð2nþ 1Þ!! : ð22Þ
Remark 3. It follows from (8) that
P ¼ 2d
d þ 1

� E
1� m2

ahðaÞ: ð23Þ
In particular, taking a limit d ! 1 in (8), one obtains the Boussinesq relation for a flat ended cylindrical

indenter of the radius a
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P ¼ 2E
1� m2

ahðaÞ: ð24Þ
3. Adhesive (no-slip) axi-symmetric contact problems

Let us consider next the adhesive axi-symmetric Hertz type contact problems. If the external parameter

of the problem P is gradually increased then the surface displacements urðr; 0;PÞ and uzðr; 0;PÞ will be
functions of both r and the parameter of the problem P. Once the point of the surface contacts with the

indenter, its radial displacement does not change further with P. Hence, instead of the conditions (6), one

can write the following no-slip condition within the contact region
our
oP

ðr; 0;PÞ ¼ 0: ð25Þ
The analysis of the adhesive contact problems was performed first incrementally (Mossakovskii, 1954,

1963; Goodman, 1962) for a growth in the contact radius a. Mossakovskii noted self-similarity of the

problem for punches described by monomial functions (7). However, only Spence (1968) pointed out that

the solution can be obtained directly without application of the incremental techniques (see, Johnson, 1985;

Gladwell, 1980). Self-similarity of a general frictional Hertz type contact problem was shown later by

Borodich (1993).

Mossakovskii (1954, 1963) considered only two particular examples of no-slip contact problems, namely

the problems for a flat-ended cylinder and a parabolic punch. Spence (1968) introduced an alternative
method for solution of the problems, corrected some misprints in the Mosskovskii examples and presented

also the solution to the problem for a conical punch.

Following Mossakovskii and Spence, let us take the contact radius a as the external parameter of the

problem P.
3.1. The Mossakovskii solution for adhesive contact

In 1954 Mossakovskii presented the solution to a mixed boundary value problem for an elastic half-

space when the line separating the boundary conditions is a circle. As an example, he gave a solution for a

flat-ended circular punch of the radius a under condition of adhesive (no-slip) contact. Mossakovskii

presented the following formula for the compressing normal stresses rzz under a flat-ended punch of the

radius a under condition of adhesive (no-slip) contact
r0
zzðq; 0; aÞ ¼ Kh0

1

q
d

dq

Z q

0

sin b ln
a� x
aþ x

� �
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 � x2
p dx: ð26Þ
Here h0 is the depth of the punch and
b ¼ 1

2p
lnð3� 4mÞ; K ¼ 8lð1� mÞ

pð1� 2mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4m

p :
The correctness of the formula (26) was later checked by Keer (1967) and Spence (1968). Speaking about

the further calculations of the compressing stress by Mossakovskii, Spence (1968) made a remark that a

factor of 2 was omitted throughout his paper of 1963, beginning with his equation (2.16). Indeed,

Mossakovskii�s papers have various misprints; for example, Mossakovskii�s expression for the contact force
obtained by integration of the pressure (26) over the contact region, should be (see Spence, 1968, and

Khadem and Keer, 1974)
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P ¼ 4lh0a
lnð3� 4mÞ
1� 2m

:

However, at this instance his calculations were correct and Spence was in error. The above formula was

also presented with a misprint in Johnson�s book (1985), see (3.105). One can see that the solution differs

from the frictionless Boussinesq solution (24).

Integrating (26) by parts, one obtains the following formula for the pressure under a circular plane

punch with unit settlement
r0
zzðq; 0; aÞ ¼ �2baK

Z q

0

vðx; aÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � x2

p
ða2 � x2Þ

; vðx; aÞ ¼ cos b ln
a� x
aþ x

� �
: ð27Þ
Applying the incremental approach to the solution (27) with varying radius t of the punch, one can

calculate the normal stress under a curved axi-symmetric punch
rzzðq; 0; aÞ ¼
Z a

q
h0ðtÞr0

zzðq; 0; tÞdt: ð28Þ
Developing the Mossakovskii approach, Borodich and Keer (2004) obtained the following formula for

the contact force
P ðaÞ ¼ 16lð1� mÞ lnð3� 4mÞ
pð1� 2mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4m

p I
Z a

0

h0ðtÞtdt; I ¼
Z a

0

vðx; aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p dx: ð29Þ
The integral I can be calculated using the Abramov–Muskhelishvili solution to the two-dimensional

problem of adhesive contact between a punch with straight horizontal base and an elastic half-plane (see
Appendix C)
I ¼ p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4m

p

1� m
:

Hence, it follows from (29) that the general expression for the force acting on a curved axi-symmetric

punch at adhesive contact, is
P ðaÞ ¼ 4l lnð3� 4mÞ
ð1� 2mÞ

Z a

0

h0ðtÞtdt: ð30Þ
By differentiating (30) with respect to a, one obtains that the slope of the P–h curve is
dP
dh

¼ P 0ðaÞ
h0ðaÞ ¼

4l lnð3� 4mÞ
ð1� 2mÞ a ð31Þ
or
S ¼ dP
dh

¼ C
2E

1� m2

ffiffiffi
A

pffiffiffi
p

p : ð32Þ
Thus, the BASh relation (1) should be corrected by the factor C in the case of frictional contact, where in

the case of adhesive (no-slip) contact
C ¼ ð1� mÞ lnð3� 4mÞ
1� 2m

: ð33Þ
This factor decreases from C ¼ ln 3 ¼ 1:0986 at m ¼ 0 and takes its minimum C ¼ 1 at m ¼ 0:5. Taking
into account that full adhesion preventing any slip within the contact region is not the case for real physical
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contact and there is some frictional slip at the edge of the contact region (see Galin 1945, 1953; Spence,

1975), we can conclude that the values of the correction factor C in (32) cannot exceed the upper bound

(33).

3.2. Solution to the problem for punches of monomial shape

Let us consider in detail the adhesive contact for punches of monomial shape. In the adhesive contact
problem, the equation for the determination of the derivative of the sought function h0ðtÞ of displacements

under the punch of the shape x3 ¼ �f ðqÞ has the form (Mossakovskii, 1963)
f ðqÞ ¼ 2

p

Z q

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � x2

p Z x

0

h0ðtÞ cos b ln
x� t
xþ t

� �
dt

� �
dx: ð34Þ
It follows from (34) that if h0ðtÞ ¼ Kdtd�1 or hðtÞ ¼ Kdtd=d then f ðqÞ ¼ Bdqd where
Bd ¼ KdCd ; Cd ¼
2

p
I�ðdÞI��ðdÞ ð35Þ
and
I�ðdÞ ¼
Z 1

0

td�1 cos b ln
1� t
1þ t

� �
dt; I��ðdÞ ¼

Z 1

0

xdffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx:
Taking into account
I��ðdÞ ¼ 1

2

C 1
2

� 	
C dþ1

2

� 	
C dþ2

2

� 	 ¼ 1

d

ffiffiffi
p

p
C dþ1

2

� 	
C d

2

� 	 ¼ 21�dp
d

CðdÞ
C d

2

� 	
 �2 ;

one obtains
Cd ¼
22�d

d
CðdÞ
C d

2

� 	
 �2 I�ðdÞ:

It follows from (30) that the force is
P ðaÞ ¼ 4l lnð3� 4mÞ
ð1� 2mÞ � Bd

Cd
� adþ1

d þ 1
: ð36Þ
Thus, in the case of axi-symmetric punches whose shape is described by monomial functions (7), the

relations between the force P and the contact radius a and between the displacement h and a are given by

the following exact formulae
P ¼ E lnð3� 4mÞ
ð1þ mÞð1� 2mÞBd

d
d þ 1

2d�1 ½Cðd=2Þ�
2

CðdÞ
1

I�ðdÞ a
dþ1; h ¼ Bd2

d�2 ½Cðd=2Þ�
2

CðdÞ
1

I�ðdÞ a
d : ð37Þ
Using (37), one can establish the following relation between the force P and the displacement h for a

monomial punch in the case of adhesive contact
P ¼ E lnð3� 4mÞ
ð1þ mÞð1� 2mÞ

d
d þ 1

4I�ðdÞ
Bd

CðdÞ
½Cðd=2Þ�2

" #1=d

h
dþ1
d : ð38Þ
In the case m ¼ 0:5, one has
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lim
m!0:5

E lnð3� 4mÞ
ð1þ mÞð1� 2mÞ ¼

4E
3
;

b ¼ 0 and I�ðdÞ ¼ 1=d. Hence, the formulae (37) and (38) are identical with the corresponding formulae (8)

and (9) obtained by Galin (1946) for frictionless contact.
Using the above general solution for monomial punches, we can consider some particular cases.

Conical punch. In the case of a cone of semi-vertical angle p=2� a, d ¼ 1, f ðqÞ ¼ B1q, and h0ðaÞ ¼ K1.

For a linearized treatment to be possible, a must be small compared with 1 and tan a ¼ B1 � a. It follows
from (36) that the force is
P ¼ 2l lnð3� 4mÞ
1� 2m

B1

C1

a2:
Taking into account that C 1
2

� 	
¼

ffiffiffi
p

p
and Cð1Þ ¼ 1, one obtains from (37)
P ¼ pl lnð3� 4mÞ
ð1� 2mÞI�ð1ÞB1a2: ð39Þ
I�ð1Þ can be represented as the following Fourier transform (see (4.6) by Spence (1968))
I�ð1Þ ¼
Z 1

0

cos b ln
1� t
1þ t

� �
dt ¼

Z 1

0

cosðbn=2Þsech2ndn; nðtÞ ¼ 1

2
ln
1þ t
1� t
and using tables collected by Erdelyi (1954, p. 30)
I�ð1Þ ¼ pbcosechðpbÞ ¼ 2pb
ðepb � e�pbÞ ¼

lnð3� 4mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4m

p

2ð1� 2mÞ : ð40Þ
Substituting (40) into (39), we obtain
P ¼ 2lpB1a2ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4m

p :
The adhesive problem for a cone was first considered by Spence (1968). The above relation is the same as
obtained by Spence (1968) (see his equation (4.26)).

Spherical punch. In the case of a sphere of radius R, d ¼ 2, B2 ¼ 1=ð2RÞ, f ðqÞ ¼ B2q2, and
h0ðaÞ ¼ K2a ¼ a=ð2RC2Þ: ð41Þ

It follows from (37)
P ¼ 2l lnð3� 4mÞ
3Rð1� 2mÞ

a3

C2

¼ 4l lnð3� 4mÞ
3Rð1� 2mÞI�ð2Þ a

3:
The adhesive problem for a sphere was first considered by Mossakovskii (1963) and Spence (1968). Our

constant C2 is d1 in Mossakovskii�s notation and cðjÞ=4 in Spence�s notation. Their results are identical with
the above, except for a factor 2 which was omitted by Mossakovskii in his equation (5.6) (this is because he

omitted this factor earlier in his equation (5.2) which is our (41)) and factor cðjÞ which was omitted by

Spence in his equation (4.20).
4. Similarity considerations of 3D indentation

So far, we have considered axi-symmetric indenters and isotropic, linear elastic materials. However, if

the indenter is neither a sphere nor a cone, but is either a Vickers or Berkovich indenter whose tip is a
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nominally four-sided or a three-sided pyramid, respectively, then the axi-symmetric solutions are not valid.

Also, the solution is not valid when the tested material is anisotropic. In addition, real indenters have some

deviation from their nominal shapes. Hence, it is important to derive theoretical formulae, which are valid

for general 3D schemes of nanoindentation by indenters of non-ideal shapes.
The conditions under which frictionless Hertz type contact problems possess classical self-similarity, are

as follows (Borodich, 1988): the constitutive relationships are homogeneous with respect to the strains or the

stresses and the indenter’s shape is described by a homogeneous function whose degree is greater than or equal

to unity. It is also assumed that during the process of the contact, the loading at any point is progressive. This

mean that the functions of the indenter�s shape f should satisfy the identity f ðkx1; kx2Þ ¼ kdf ðx1; x2Þ, for
arbitrary positive k. Here d is the degree of the homogeneous function f , in particular, d ¼ 2 for the elliptic

paraboloid considered by Hertz. Additionally, operators of constitutive relations F for materials of

contacting bodies should be homogeneous functions of degree j with respect to the components of the
strain tensor eij, i.e.,
FðkeijÞ ¼ kjFðeijÞ: ð42Þ
The theoretical analysis of Hertz-type contact problems based on similarity transformations of the 3D

contact problems does not depend on the anisotropy of the material (Borodich, 1990, 1993). The material

behavior of the medium may be linear or non-linear, anisotropic or isotropic, depending on the form of the

operator F. Hooke�s law is an example of the linear (j ¼ 1) homogeneous constitutive relationships.

Another example is the constitutive relationships of a plastic isotropic non-compressible material of the

form
rD
ij ¼ KCj�1�ij; ð43Þ
where dij is the Kroneker delta, rD
ij are components of stress deviator,
rD
ij ¼ rij � dijr; r ¼ rii=3; C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Dij�

D
ij=2

q
;

where C is the intensity of shear strains, and K and j are material constants. The constitutive relationships

of a plastic anisotropic materials given by Pobedrya (1984) are also homogeneous. These relationships are

often noted as the power law of material hardening.

Let P1 be some initial value of the external load, lðP1Þ and hðP1Þ be respectively the characteristic size of

the contact region and the depth of indentation (displacement) at this load. Then l and h at any other value

of the load for monomial indenters and materials with power-law stress–strain relations can be re-scaled

using the following formulae (Borodich, 1989, 1993):
hðc; P Þ ¼ cð2�jÞ=½2þjðd�1Þ�ðP=PIÞd=½2þjðd�1Þ�hð1; PIÞ;
lðc; P Þ ¼ c�j=½2þjðd�1Þ�ðP=PIÞ1=½2þjðd�1Þ�lð1; PIÞ:

ð44Þ
For linear elastic materials, j ¼ 1. Hence, one has h � Pd=ðdþ1Þ and l � P 1=ðdþ1Þ. This is in accordance

with Galin�s (1946) formulae (8) and (9) for isotropic materials and in the case of d ¼ 2 with the Willis�
(1966) solution for anisotropic elastic solids.

We have considered above the adhesive contact conditions. Let us denote the quantities referring to the

body xþ3 6 0 by a superscript ‘‘plus’’ sign, and those referring to the second body by a superscript ‘‘minus’’

sign. In the adhesive contact problem, there is no relative slip between the bodies within the contact region.

If the following values are introduced
v1ðx1; x2Þ � uþ1 ðx1; x2; 0; P Þ � u�1 ðx1; x2; 0; P Þ
and



F.M. Borodich, L.M. Keer / International Journal of Solids and Structures 41 (2004) 2479–2499 2493
v2ðx1; x2Þ � uþ2 ðx1; x2; 0; P Þ � u�2 ðx1; x2; 0; P Þ;
then the condition within this region is that these values do not change with augmentation of the external

parameter P. These conditions can be expressed by
o

oP
viðx1; x2; 0;PÞ ¼ 0; dP > 0: ð45Þ
In the frictional contact problem, it is usually assumed (see Bryant and Keer, 1982) that the contact

region consists of the following parts: in the inner part G1 the interfacial friction must be sufficient to

prevent any slip taking place between bodies, i.e., (42) holds; in the outer part G n G1 the friction must

satisfy the Coulomb frictional law (Vermeulen and Johnson, 1964; Spektor, 1981). Let us define the vector

of tangential stresses s	ðx1; x2; 0; P Þ � ðr	
31ðx1; x2; 0; P Þ; r	

32ðx1; x2; 0; PÞÞ. Then the frictional contact condi-

tions can be written as
o

oP
viðx1; x2; 0;PÞ ¼ 0; dP > 0; ðx1; x2Þ 2 G1;
s	ðx1; x2; 0; P Þ ¼ �hr	
33ðx1; x2; 0; P Þ

vðx1; x2; 0; P Þ
jvðx1; x2; 0; P Þj

� �
; ðx1; x2Þ 2 G n G1: ð46Þ
The re-scaling formulae (44) are valid not only in the case of frictionless contact but also for frictional

contact problems, in particular when both regions of stick and slip are within the contact region (see the

above conditions (46)).
Let us denote by P1, A1, l1 and h1 respectively some initial load, the corresponding contact area, the

characteristic size of the contact region and the displacement. Then (44) can be re-written as
l
l1

¼ c
�j

2þjðd�1Þ
P
P1

� � 1
2þjðd�1Þ

;
h
h1

¼ c
2�j

2þjðd�1Þ
P
P1

� � d
2þjðd�1Þ

ð47Þ
and as shown by Borodich et al. (2003), the re-scaling formula for the contact area is
A
A1

¼ c�2=d h
h1

� �2=d

: ð48Þ
If one considers the same indenter then c ¼ 1. It follows from (48) that if the indenter tip is described as a

monomial function of degree d, then h � Ad=2 independently of the work hardening exponent j.
For a fixed indenter, i.e. c ¼ 1, the hardness is the following function of the depth of indentation
H
H1

¼ h
h1

� �jðd�1Þ
d

:

However, for an ideal conical or pyramid-shaped indenters d ¼ 1 and the hardness is constant.
The above re-scaling formulae (47) and (48) were obtained assuming the homogeneity of material

properties and that the stress–strain relation remains the same for any depth of indentation. This is not

always true (see a review by Ioffe, 1949). In addition, it is known that plastic deformation exhibits a strong

dependence on size below micrometer length scales (see, e.g. Gao et al., 1999 and literature therein). One

possible way to model these effects is to employ models of strain gradient plasticity. However, as we have

seen above, non-ideal indenter geometries can also affect the interpretation of the experimental results.

Using (48), one can calibrate the indenter tip from area–displacement curve. An example of such a curve

was given by Doerner and Nix (1986). Employing (48), one can obtain from their data that the indenter
shape for h6 90 nm can be described as a monomial function of degree d ¼ 1:44 (see Fig. 2).
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Fig. 2. The area–indentation depth curve for a non-ideal Berkovich indenter (after Borodich et al., 2003). Experimental data from

Doerner and Nix (1986).
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5. Conclusion

Nanoindentation techniques provide a unique opportunity to obtain mechanical properties of materials

of very small volumes. There is also a correlation between the tensile stress–strain curve and the hardness

(see, e.g. Ludwik, 1927; Davidenkov, 1943; Zaitsev, 1949; Men�cik, 1996; and Dao et al., 2001). Various

plasticity characteristic can be also obtained through hardness measurements (Milman et al., 1993). The
load–displacement and load–area curves are the basis for nanoindentation tests, and their interpretation is

usually based on the main assumptions of the Hertz contact theory and formulae obtained for ideally

shaped indenters. We have re-examined some fundamental relations of the nanoindentation mechanics and

studied the influence of frictional boundary conditions on the relations.

We have showed that the BASh relation (1) can be derived for frictionless contact using various ways:

directly from the Galin (1946) solution, from representation of the shape function in the form of series, and

directly from the Sneddon (1965) solution. For frictional contact, the formula for the stiffness is given by

(32), i.e. the BASh relation should be corrected by a factor C. The upper value of the factor is given by (33)
obtained for adhesive contact.

Then we have concentrated on indenters of monomial shape and derived exact solutions for adhesive

axi-symmetric contact. The obtained formulae (37) and (38) coincide with Galin�s frictionless formulae (8)

and (9) when the material is incompressible.

For monomial indenters and homogeneous constitutive relations, contact problems obey the self-similar

laws. Using similarity considerations of 3D contact problems (Borodich, 1989, 1993) and the corresponding

formulae, the fundamental relations (47) and (48) are derived for depth of indentation, size of the contact

region, load, hardness, and contact area, which are valid for both linear and non-linear, isotropic and
anisotropic materials. For loading, the formulae depend on the material hardening exponent j and the

degree of the monomial function of the shape d, in particular h � Ad=2 independently of the work hardening

exponent.

It is widely accepted that the most significant source of uncertainty in nanoindentation measurement is

the deviation of the indenter tip from nominal geometry (Herrmann et al., 2000). Hence, the formulae (37)
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and (38) are especially important for shallow indentation (usually less than 100 nm) where the tip bluntness

is on the same order as the indentation depth. It follows from our studies that some uncertainties in

nanoindentation measurements, which are sometimes attributed to properties of the material, can be ex-

plained and quantitatively described by properly accounting for geometric deviation of the indenter tip
from its nominal geometry.
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Appendix A. The Sneddon representation of the Galin solution

Let us derive formulae (20) and (21) from the Galin solution (12) and (13). Substituting (14) into (12),

one has
P
2E� ¼ I1 þ I2; I1 ¼

Z a

0

f 00ðq1Þq1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

1

q
dq1; I2 ¼

Z a

0

f 0ðq1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

1

q
dq1:
Integrating by parts, one obtains
I1 ¼ f 0ðq1Þq1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

1

q� �a
0

�
Z a

0

f 0ðq1Þd q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

1

q� �
¼ �I2 þ

Z a

0

q2
1f

0ðq1Þdq1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

1

p :
Hence,
P
2E� ¼

Z a

0

q2
1f

0ðq1Þdq1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

1

p ¼
Z a

0

q2
1 df ðq1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

1

p : ðA:1Þ
By making a substitution n ¼ q1=a and using shear modulus l instead of E, one obtains (20)
1� m
4l

P ¼ a
Z 1

0

n2 dwðnÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p :
Similarly, substituting (14) into (13), one has h ¼ I3 þ I4, where
I3 ¼
Z a

0

q1f
00ðq1Þarctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1=a2
q� �

dq1; I4 ¼
Z a

0

f 0ðq1Þarctanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1=a2
q� �

dq1:
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Integrating by parts, one obtains
I3 ¼ f 0ðq1Þq1arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1=a2
q� �� �a

0

�
Z a

0

f 0ðq1Þd q1arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1=a2
q� �� �

¼ �I4 �
Z a

0

q1f
0ðq1Þd arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1=a2
q� �� �

:

Hence, one has
h ¼ �
Z a

0

q1f
0ðq1Þd arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1=a2
q� �� �

:

Taking into account (18), one obtains the following representation of Galin�s formula
hðaÞ ¼
Z a

0

f 0ðq1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1=a2
p dq1: ðA:2Þ
As above, a substitution n ¼ q1=a leads to the Sneddon formula for the depth of indentation of a axi-

symmetric punch having contact radius q ¼ a
h ¼
Z a

0

df ðq1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1=a2
p ¼

Z 1

0

dwðnÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p :
Appendix B. The BASh relation for frictionless axi-symmetric punches

Let us derive the BASh relation from the Sneddon representation. This way of derivation is similar to the

way used by Pharr et al. (1992). It follows from (A.1) and (A.2)
P
1� m2

2E
¼ a2

Z a

0

f 0ðq1Þdq1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

1

p �
Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

1

q
f 0ðq1Þdq1 ¼ ahðaÞ �

Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

1

q
f 0ðq1Þdq1: ðB:1Þ
Differentiating (B.1) by a, one has
1� m2

2E
dP
da

¼ hðaÞ þ a
dhðaÞ
da

� d

da

Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

1

q
f 0ðq1Þdq1:
However,
d

da

Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

1

q
f 0ðq1Þdq1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

1

q
f 0ðq1Þ

����
q1¼a

þ
Z a

0

d

da

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

1

q
f 0ðq1Þdq1 ¼ hðaÞ:
or
1� m2

2E
dP
da

¼ hðaÞ þ a
dhðaÞ
da

� hðaÞ ¼ a
dhðaÞ
da

:

Hence, one obtains (1)
1� m2

2E
dP
dh

¼ 1� m2

2E

dP
da

dhðaÞ
da

¼ a:
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Appendix C. Two-dimensional problem for a punch with horizontal base

First, an effective solution to the two-dimensional problem of adhesive contact between a punch with

straight horizontal base and an elastic half-plane was given by Abramov (1937) using Mellin�s integrals.
Then Muskhelishvili (1949) gave another solution to the problem using Kolosov�s (1914) complex poten-

tials. The pressure pðxÞ under the punch �a6 x6 a loaded by a vertical force P0 is determined by the

following formula
pðxÞ ¼ 2P0ð1� mÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4m

p cos b ln
aþ x
a� x

h i
:

(Note the coefficient 1/2 omitted by Muskhelishvili (1949) in his equations (114.7a) and (114.8a).)

On the other hand, one has
P0 ¼
Z a

�a
pðxÞdx ¼ 2

Z a

0

pðxÞdx ¼ 4P0ð1� mÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4m

p
Z a

0

vðx; aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p dx:
Hence,
I ¼
Z a

0

vðx; aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p dx ¼ p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4m

p

1� m
:

References

Abramov, V.M., 1937. The problem of contact of an elastic half-plane with an absolutely rigid rough foundation. Doklady AN SSSR

17, 173–178 (in Russian).

Abramovitz, M., Stegun, I.A. (Eds.), 1964. Handbook of mathematical functions with formulas, graphs, and mathematical tables. US

Government Printing Office, Washington.

Alekhin, V.P., Berlin, G.S., Isaev, A.V., Kalei, G.N., Merkulov, V.A., Skvortsov, V.N., Ternovskii, A.P., Khrushchov, M.M.,

Shnyrev, G.D., Shorshorov, M.Kh., 1972. Micromechanical testing of materials by microimpression. Ind. Lab. 38, 619–621.

Belyaev, N.M., 1924. Local stresses by compressing elastic solids. In: Collection of papers ‘‘Engineering Structures and Structural

Mechanics’’. Put�, Leningrad, pp. 27–108 (in Russian).

Bhattacharya, A.K., Nix, W.D., 1988. Finite-element simulation of indentation experiments. Int. J. Solids Struct. 24, 881–891.

Borodich, F.M., 1983. Similarity in the problem of contact between elastic bodies. J. Appl. Math. Mech. 47, 519–521.

Borodich, F.M., 1988. Use of the theory of similarity in the nonlinear problem of contact between an indenter and anisotropic metallic

foundations. In: Bogatov, A.A. et al. (Eds.), Abstracts of Reports of All-Union Conference ‘‘Metal’’-Programme�s Fulfillers.

Krasnoyarskii Polytechnical Institute Press, Abakan, pp. 195–196 (in Russian).

Borodich, F.M., 1989. Hertz contact problems for an anisotropic physically nonlinear elastic medium. Strength Mater. 21, 1668–1676.

Borodich, F.M., 1990. Hertz contact problems for an elastic anisotropic half-space with initial stresses. Sov. Appl. Mech. 26, 126–132.

Borodich, F.M., 1993. The Hertz frictional contact between nonlinear elastic anisotropic bodies (the similarity approach). Int. J. Solids

Struct. 30, 1513–1526.

Borodich, F.M., Galanov, B.A., 2002. Self-similar problems of elastic contact for non-convex punches. J. Mech. Phys. Solids 50, 2441–

2461.

Borodich, F.M., Keer, L.M., Korach, C.S., 2003. Analytical study of fundamental nanoindentation test relations for indenters of non-

ideal shapes. Nanotechnology 14, 803–808.

Borodich, F.M., Keer, L.M., 2004. Evaluation of elastic modulus of materials by adhesive (no-slip) nanoindentation. Proc. R. Soc. Ser.

A, in press.

Brinell, J.A., 1900. M�emoire sur les �epreuves a bille en acier. In: Communications pr�esent�ees devant le Congr�es international des

m�ethodes d�essai des mat�eriaux de construction, tenu �a Paris du 9 au 16 juillet 1900, vol. 2, pp. 83–94.

Bryant, M.D., Keer, L.M., 1982. Rough contact between elastically and geometrically identical curved bodies. Trans. ASME J. Appl.

Mech. 49, 345–352.



2498 F.M. Borodich, L.M. Keer / International Journal of Solids and Structures 41 (2004) 2479–2499
Bulychev, S.I., Alekhin, V.P., 1990. Testing of Materials by Continuous Impressing of an Indenter. Mashinostroenie, Moscow (in

Russian).

Bulychev, S.I., Alekhin, V.P., Shorshorov, M.Kh., Ternovskii, A.P., Shnyrev, G.D., 1975. Determination of Young�s modulus

according to indentation diagram. Ind. Lab. 41, 1409–1412.

Bulychev, S.I., Alekhin, V.P., Shorshorov, M.Kh., Ternovskii, A.P., 1976. Mechanical properties of materials studied from kinetic

diagrams of load versus depth of impression during microimpression. Strength Mater. 8, 1084–1089.

Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A., Suresh, S., 2001. Computational modeling of the forward and reverse

problems in instrumented sharp indentation. Acta Mater. 49, 3899–3918.

Davidenkov, N.N., 1943. Extracting the tension diagram on the basis of hardness tests. Zhur. Tekh. Fiz. 13, 389–393 (in Russian).

Dinnik, A.N., 1952. Impact and compression of elastic bodies. In: Collected Works, vol. 1. Izd. Acad. Nauk Ukr.SSR, Kiev (in

Russian).

Doerner, M.F., Nix, W.D., 1986. A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1,

601–609.

Erdelyi, A. (Ed.), 1954. Tables of Integral Transforms, vol. 1. McGraw-Hill, New York.

Fischer-Cripps, A.C., 1997. Elastic-plastic behaviour in materials loaded with a spherical indenter. J. Mater. Sci. 32, 727–736.

Galanov, B.A., 1981a. Approximate solution to some problems of elastic contact of two bodies. Mech. Solids 16, 61–67.

Galanov, B.A., 1981b. Approximate solution of some contact problems with an unknown contact area under conditions of power law

of material hardening. Dokl. AN Urain. SSR, A 6, 36–41 (in Russian and Ukrainian).

Galanov, B.A., 1982. Approximate method for solution of some contact problems with an unknown contact area for two creeping

bodies. Sov. Appl. Mech. 18, 49–55.

Galanov, B.A., Grigor�ev, O.N., 1986. Deformation and fracture of superhard materials in concentrated loading. Strength Mater. 18,

1330–1337.

Galin, L.A., 1946. Spatial contact problems of the theory of elasticity for punches of circular shape in planar projection. J. Appl. Math.

Mech. (PMM) 10, 425–448 (in Russian).

Galin, L.A., 1953. Contact Problems in the Theory of Elasticity. Gostekhizdat, Moscow-Leningrad (English transl. Galin, L.A. (1961).

I.N. Sneddon, (Ed.), Contact Problems in the Theory of Elasticity. North Carolina State College, Departments of Mathematics and

Engineering Research, NSF Grant No. G16447, 1961).

Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W., 1999. Mechanism-based strain gradient plasticity––I Theory. JMPS 47, 1239–1263.

Gladwell, G.M.L., 1980. Contact Problems in the Classical Theory of Elasticity. Sijthoff and Noordhoff, Alphen aan den Rijn.

Goodman, L.E., 1962. Contact stress analysis of normally loaded rough spheres. J. Appl. Mech. 29, 515–522.

Grigor�ev, O.N., Milman, Y.V., Skvortsov, V.N., Ternovskii, A.P., Trefilov, V.I., Chugunova, S.I., 1977. Resistance of covalent

crystals to microindentation. Sov. Powder Metall. Met. Ceram. 16, 628–634.

Grodzinski, P., 1953. Hardness testing of plastics. Plastics 18, 312–314.

Hay, J.C., Bolshakov, A., Pharr, G.M., 1999. An critical examination of the fundamental relations used in the analysis of

nanoindentation data. J. Mater. Res. 14, 2296–2305.

Herrmann, K., Jennett, N.M., Wegener, W., Meneve, J., Hasche, K., Seemann, R., 2000. Progress in determination of the area

function of indenters used for nanoindentation. Thin Solid Films 377, 394–400.

Hertz, H., 1882a. Ueber die Ber€uhrung fester elastischer K€orper. J. Reine Angew. Math. 92, 156–171 (English transl. Hertz, H. (1896)

On the contact of elastic solids. Miscellaneous papers by H. Hertz. In: D.E. Jones, G.A. Schott, (Eds.), Macmillan, London, pp.

146–162).

Hertz, H., 1882b. Ueber die Ber€uhrung fester elastischer K€orper und €uber die H€arte. Verhandlungen des Vereins zur Bef€orderung des

Gewerbefleißes. Berlin, November, 1882 (English transl. Hertz, H. (1896) On the contact of elastic solids and on hardness.

Miscellaneous papers by H. Hertz. In: D.E. Jones, G.A. Schott, (Eds.), Macmillan, London, pp. 163–183).

Ioffe, B.S., 1949. Application of the method of microhardness measurements for solving some physical problems. Zhur. Tekh. Fiz. 19,

1089–1102 (in Russian).

Johnson, K.L., 1982. 100 years of Hertz contact. Proc. Inst. Mech. Eng. 196, 363–378.

Johnson, K.L., 1985. Contact Mechanics. Cambridge University Press, Cambridge.

Kalei, G.N., 1968. Some results of microhardness test using the depth of impression. Mashinovedenie 4 (3), 105–107 (in Russian).

Keer, L.M., 1967. Mixed boundary-value problems for an elastic half-space. Proc. Camb. Philos. Soc. 63, 1379–1386.

Khadem, R., Keer, L.M., 1974. Coupled pairs of dual integral equations with trigonometric kernels. Quart. Appl. Math. 31, 467–480.

Khrushchov, M.M., Berkovich, E.S., 1950. Experience in the application of electronic microscope for measurement of very small

imprints obtained at microhardness test. Izvestiya AN SSSR. Otd. Tekh. Nauk. 11, 1645–1649 (in Russian).

Kolosov, G.V., 1914. €Uber einige Eigenschaften des ebenen Problems der Elastizit€atstheorie. Z. Math. Phys. 62, 383–409.

Larsson, P.L., 2001. Investigation of sharp contact at rigid-plastic conditions. Int. J. Mech. Sci. 43, 895–920.

Ludwik, P., 1908. Die Kegeldruckprobe, ein neues Verfahren zur H€artebestimmung von Materialien. Springer, Berlin.

Ludwik, P., 1927. Die Bedeutung des Gleit- und Reißwiderstandes f€ur die Werkstoffpr€ufung. Z. des Verein. deutscher Ingenieure 71,

1532–1538.



F.M. Borodich, L.M. Keer / International Journal of Solids and Structures 41 (2004) 2479–2499 2499
Lur�e, A.I., 1955. In: Radok, J.R.M. (Ed.), Three-Dimensional Problems of the Theory of Elasticity, Gostekhizdat, Moscow.

Interscience Publishers, New York (English transl. Lur�e, A.I. (1964)).

Mata, M., Anglada, M., Alcala, J., 2002. Contact deformation regimes around sharp indentations and the concept of the characteristic

strain. J. Mater. Res. 17, 964–976.

Men�cik, J., 1996. Mechanics of Components with Treated or Coated Surfaces. Kluwer, Dordrecht.

Meyer, E., 1908. Untersuchungen €uber H€artepr€ufung und H€arte. Physikalische Z. 9, 66–74.

Milman, Y.V., Galanov, B.A., Chugunova, S.I., 1993. Plasticity characteristic obtained through hardness measurement. Acta Metall.

Mater. 41 (9), 2523–2532.

Mossakovskii, V.I., 1954. The fundamental mixed problem of the theory of elasticity for a half-space with a circular line separating the

boundary conditions. J. Appl. Math. Mech. (PMM) 18, 187–196 (in Russian).

Mossakovskii, V.I., 1963. Compression of elastic bodies under conditions of adhesion (axisymmetric case). J. Appl. Math. Mech. 27,

630–643.

Mott, B.A., 1956. Micro-Indentation Hardness Testing. Butterworths, London.

Muskhelishvili, N.I., 1949. Some Basic Problems of the Mathematical Theory of Elasticity. Moscow (English transl. by J.R.M. Radok,

Noordhoff International Publishing, Leyden, 1977).

Pobedrya, B.E., 1984. The deformation theory of plasticity of anisotropic media. J. Appl. Math. Mech. 48, 10–17.

Pethica, J.B., Hutchings, R., Oliver, W.C., 1983. Hardness measurement at penetration depths as small as 20-nm. Philos. Mag. A 48,

593–606.

Pharr, G.M., Oliver, W.C., Brotzen, F.R., 1992. On the generality of the relationship among contact stiffness, contact area, and elastic

modulus during indentation. J. Mater. Res. 7, 613–617.

R�eaumur, R.A., 1722. L�art de convertir le fer forge en acier et l�art d�adoucir le fer fondu ou de faire des ouvrages de faire fondu aussi

finis que de fer forge. Michel Brunet, Paris. pp. 566–587 (reprinted in part, with r�esum�e by F. Cournot, 1922. Revue de Metallurgie,

Memoires 19, 447–468.

Rockwell, S.P., 1922. Testing metals for hardness. Trans. Am. Soc. Steel Treat. 2, 1013–1033.

Shorshorov, M.Kh., Bulychev, S.I., Alekhin, V.P., 1981. Work of plastic and elastic deformation during indenter indentation. Sov.

Phys. Dokl. 26, 769–771.

Shtaerman, I.Ya., 1939. On the Hertz theory of local deformations resulting from the pressure of elastic solids. Dokl. Akad. Nauk

SSSR 25, 360–362 (in Russian).

Smith, R.L., Sandland, G.E., 1922. An accurate method of determining the hardness of metals, with particular reference to those of a

high degree of hardness. Proc. Inst. Mech. Eng. 1, 623–641.

Smith, R.L., Sandland, G.E., 1925. Some notes on the use of a diamond pyramid for hardness testing. J. Iron Steel Inst. 111, 285–294.

Sneddon, I.N., 1965. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary

profile. Int. J. Eng. Sci. 3, 47–57.

Spence, D.A., 1968. Self similar solutions to adhesive contact problems with incremental loading. Proc. R. Soc. London A 305, 55–80.

Spektor, A.A., 1981. Some three-dimensional static contact problems of elasticity with slippage and adhesion. Mech. Solids 16, 10–21.

Spence, D.A., 1975. The Hertz contact problem with finite friction. J. Elast. 5, 297–319.

Tabor, D., 1951. The Hardness of Metals. Clarendon Press, Oxford.

Ternovskii, A.P., Alekhin, V.P., Shorshorov, M.Kh., Khrushchov, M.M., Skvortsov, V.N., 1973. Micromechanical testing of materials

by depression. Ind. Lab. 39, 1620–1624.

Vermeulen, P.J., Johnson, K.L., 1964. Contact of non-spherical elastic bodies transmitting tangential forces. Trans. ASME J. Appl.

Mech. 31, 338–340.

Williams, S.R., 1942. Hardness and Hardness Measurements. American Society for Metals, Cleveland.

Willis, J.R., 1966. Hertzian contact of anisotropic bodies. J. Mech. Phys. Solids 14, 163–176.

Zaitsev, G.P., 1949. Hertz problem and Brinell test. Zhur. Tekh. Fiz. 19, 336–346 (in Russian).


	Contact problems and depth-sensing nanoindentation for frictionless and frictional boundary conditions
	Introduction
	Hardness measurements
	Depth-sensing techniques

	Frictionless indentation
	Hertz type contact problems for rigid indenters
	Formulation of a Hertz type contact problem
	The Galin solution and the BASh relation
	The Galin solution for frictionless axi-symmetric contact

	Adhesive (no-slip) axi-symmetric contact problems
	The Mossakovskii solution for adhesive contact
	Solution to the problem for punches of monomial shape

	Similarity considerations of 3D indentation
	Conclusion
	Acknowledgements
	The Sneddon representation of the Galin solution
	The BASh relation for frictionless axi-symmetric punches
	Two-dimensional problem for a punch with horizontal base
	References


